\square

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD
 Accredited by NAAC with A++ Grade

B.E. (E.E.E.) III-Semester Main \& Backlog Examinations, Jan./Feb.-2024

Electromagnetic Field Theory

Time: $\mathbf{3}$ hours

Note: Answer all questions from Part-A and any FIVE from Part-B
Part-A $(10 \times 2=20 \mathrm{Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	Check $A=4 \overrightarrow{a_{x}}-5 \overrightarrow{a_{y}}-3 \overrightarrow{a_{z}}$ and $B=\overrightarrow{a_{x}}+6 \overrightarrow{a_{y}}+2 \overrightarrow{a_{z}}$ are perpendicular or not.	2	2	1	1,2,3
2.	Explain Divergence theorem.	2	1	1	1,2,3
3.	Express Ohm's law in point form.	2	1	2	1,2,3
4.	Mention the properties of dielectrics.	2	1	2	1,2,3
5.	State Biot-Savart's law.	2	1	3	1,2,3
6.	Differentiate between self and mutual inductances.	2	2	3	1,2,3
7.	What is displacement current?	2	1	4	1,2,3
8.	Define Electromagnetic Compatibility (EMC.)	2	1	4	1,2,3
9.	Define attenuation constant and phase constant.	2	1	5	1,2,3
10.	What is skin depth? Explain its significance.	2	1	5	1,2,3
	Part-B ($5 \times 8=40 \mathrm{Marks}$)				
11. a)	State and explain Gauss's law. Mention its limitations.	4	1	1	1,2,3
b)	Given a field $V=r^{2} \sin \theta \cos \phi V$ in free space. Calculate the electric field intensity at $\mathrm{r}=1 \mathrm{~m}, \theta=-45^{\circ}, \phi=120^{\circ}$.	4	3	1	1,2,3
12. a)	Obtain the expression for \mathbf{E} due to electric dipole.	4	2	2	1,2,3
b)	A boundary exists at $z=0$ between two dielectrics with relative permittivity $\mathrm{z}<0$ is 2.5 and $\mathrm{z}>0$ is 4 . The field in region of permittivity 2.5 is $\mathrm{E}=-30 \overrightarrow{\boldsymbol{a}_{\boldsymbol{x}}}+\mathbf{5 0} \overrightarrow{\boldsymbol{a}_{\boldsymbol{y}}}+\mathbf{7 0} \overrightarrow{\boldsymbol{a}_{\mathbf{z}}} \frac{V}{m}$. Find the normal and tangential components of field intensities and flux densities.	4	4	2	1,2,3
13. a)	If magnetic vector potential is $=5 r^{2} \mathbf{a}_{z} \mathrm{~Wb} / \mathrm{m}$ in free space, find Magnetic field intensity.	4	3	3	1,2,3
b)	Derive the expression for \mathbf{H} due to an infinite current carrying conductor.	4	2	3	1,2,3

14. a) Express Maxwell's equations in point and integral forms.

4	2	4	$1,2,3$
4	1	4	$1,2,3$
4	2	5	$1,2,3$
4	2	5	$1,2,3$
4	3	1	$1,2,3$
4	3	2	$1,2,3$
4			
4	2	3	$1,2,3$
4	2	5	$1,2,3$

c) Explain the Wave propagation through perfect dielectric.

1,2,3
M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level - 1	27.5%
ii)	Blooms Taxonomy Level - 2	40%
iii)	Blooms Taxonomy Level - 3 \& 4	32.5%

