Hall Ticket Number:

Code No. : 13367 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A++ Grade

B.E. (E.E.E.) III-Semester Main & Backlog Examinations, Jan./Feb.-2024

Electromagnetic Field Theory

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

	$Part-A (10 \times 2 = 20 Marks)$				
Q. No.	Stem of the question	M	L	CO	РО
1.	Check $A = 4 \overrightarrow{a_x} - 5 \overrightarrow{a_y} - 3 \overrightarrow{a_z}$ and $B = \overrightarrow{a_x} + 6 \overrightarrow{a_y} + 2 \overrightarrow{a_z}$ are perpendicular or not.	2	2	1	1,2,3
2.	Explain Divergence theorem.	2	1	1	1,2,3
3.	Express Ohm's law in point form.	2	1	2	1,2,3
4.	Mention the properties of dielectrics.	2	1	2	1,2,3
5.	State Biot-Savart's law.	2	1	3	1,2,3
6.	Differentiate between self and mutual inductances.	2	2	3	1,2,3
7.	What is displacement current?	2	1	4	1,2,3
8.	Define Electromagnetic Compatibility (EMC.)	2	1	4	1,2,3
9.	Define attenuation constant and phase constant.	2	1	5	1,2,3
10.	What is skin depth? Explain its significance.	2	1	5	1,2,3
	Part-B ($5 \times 8 = 40$ Marks)				
11. a)	State and explain Gauss's law. Mention its limitations.	4	1	1	1,2,3
b)	Given a field $V = r^2 \sin\theta \cos\phi V$ in free space. Calculate the electric field intensity at $r = 1m$, $\theta = -45^{\circ}$, $\phi = 120^{\circ}$.	4	3	1	1,2,3
12. a)	Obtain the expression for E due to electric dipole.	4	2	2	1,2,3
b)	A boundary exists at $z = 0$ between two dielectrics with relative permittivity $z < 0$ is 2.5 and $z > 0$ is 4. The field in region of permittivity 2.5 is $E = -30\overrightarrow{a_x} + 50\overrightarrow{a_y} + 70\overrightarrow{a_z}\frac{v}{m}$. Find the normal and tangential components of field intensities and flux densities.	4	4	2	1,2,3
13. a)	If magnetic vector potential is = $5r^2 a_z$ Wb/m in free space, find Magnetic field intensity.	4	3	3	1,2,3
b)	Derive the expression for H due to an infinite current carrying conductor.	4	2	3	1,2,3

1 23

Code No. : 13367 N/O

14. a)	Express Maxwell's equations in point and integral forms.	4	2	4	1,2,3
b)	Discuss various EMI(Electromagnetic Interference) controlling techniques.	4	1	4	1,2,3
15. a)	From the fundamentals derive the plane wave equation. Express its phasor form.	4	2	5	1,2,3
b)	State and explain Poynting theorem. Express its integral form.	4	2	5	1,2,3
16. a)	Transform the vector $\mathbf{R} = 4 \overrightarrow{a_x} - 2 \overrightarrow{a_y} - 4 \overrightarrow{a_z}$ into spherical coordinates at P(2, 3, 4)	4	3	1	1,2,3
b)	In a dielectric material, $E_x=5V/m$ and $P = \frac{1}{10\pi} (3\overrightarrow{a_x} - \overrightarrow{a_y} + 4\overrightarrow{a_z})nC/m^2$. Calculate (i) electric susceptibility and (ii) electric flux density.	4	3	2	1,2,3
17.	Answer any two of the following:				
a)	Distinguish between Scalar and vector magnetic potentials.	4	2	3	1,2,3
b)	Discuss the Effects of EMI.	4	2	4	1,2,3
c)	Explain the Wave propagation through perfect dielectric.	4	2	5	1,2,3

i)	Blooms Taxonomy Level – 1	27.5%
ii)	Blooms Taxonomy Level - 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	32.5%

skin depth/ Ecpiain as signer

Part-B (5 × l = 40 Markey

an gala to Baole da cale 21 noi: 10 junto co seis rejentó (

A requiring crosses at a result between two distances. Such reactive permitting of X dense 2 is and X. Unit 4 in Relative region of permitting of X dense 2 is an A in Relative region of permitting to the second se

 Const. Softwaresteen sympothetics — Software & Data and mental attention

second the expression is a lower of an infinite come is all symplectic when

:: 2 ::

J-59 P

91